

DeviceAnywhere Enterprise

Best Practices for Object Scripting
Release 6.1

DeviceAnywhere Enterprise 6.1 Best Practices for Object Scripting

ii Keynote Confidential

DeviceAnywhere Enterprise Monitoring 6.1

DeviceAnywhere Enterprise Automation 6.1

November 2013

Notice

Copyright Notice
Copyright © 1995-2013 Keynote Systems, Inc. All rights reserved

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT ANY
EXPRESS REPRESENTATIONS OF WARRANTIES. IN ADDITION, KEYNOTE DISCLAIMS ALL
IMPLIED REPRESENTATIONS AND WARRANTIES, INCLUDING ANY WARRANTY OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF
THIRD PARTY INTELLECTURAL PROPERTY RIGHTS.

All text and figures included in this publication are the exclusive property of Keynote and may not be
copied, reproduced, or used in any way without the express permission in writing of Keynote.
Information in this document is subject to change without notice and does not represent a commitment
on the part of Keynote. Keynote may have patents or pending patent applications covering subject matter
in this document. The furnishing of this document does not give you any license to these patents except
as expressly provided in any written license agreement from Keynote.

The trademarks or registered trademarks of Keynote Systems, Inc. in the United States and other
countries include Keynote®, DataPulse®, CustomerScope®, Keynote Customer Experience Rankings®,
Perspective®, Keynote Red Alert®, Keynote WebEffective®, The Internet Performance Authority®,
MyKeynote®, SIGOS®, SITE®, keynote® The Mobile & Internet Performance Authority™, Keynote
FlexUse®, Keynote DeviceAnywhere®, DeviceAnywhere®, Keynote DemoAnywhere®, Keynote
MonitorAnywhere®. All related trademarks, trade names, logos, characters, design and trade dress are
trademarks or registered trademarks of Keynote Systems, Inc. in the United States and other countries
and may not be used without written permission. All other trademarks are the property of their
respective owners.

Please forward any comments or suggestions regarding this document to Keynote Support.

Keynote Systems, Inc.
777 Mariners Island Blvd.
San Mateo, CA 94404

Best Practices for Object Scripting DeviceAnywhere Enterprise 6.1

 Keynote Confidential iii

Contents
1 Overview ... 4

2 Script Recording .. 4
Many Ways to Script .. 4
When to Use Recording ... 5
Choosing a Recording Option .. 6
Recording Tips .. 8

3 General Tips for Testing Mobile Apps ... 8
Comparing Visual and Object-Level Scripts .. 8
Making the Most of Unpartitioned Scripts ... 8
Accounting for Pop-Ups and Other One-Time Application Behavior 9
Using Object vs. Image or Text Verification ... 10

4 Tips for Testing Web Apps .. 12
Benefits of Using Web Commands .. 12
Opening and Closing Browsers Quickly... 13
Pointers for Selecting the Correct Web Element .. 13
Tools for Narrowing Down Element Search Results... 15
Troubleshooting Empty Web Commands .. 17
Options for Setting the Device MCD for Testing Web Apps ... 17
One-Step Values for Web Elements ... 18
One-Step Form Entry and Submission .. 19

5 Best Practices for Testing Native Apps .. 20
Benefits of Using Object Commands ... 20
Pointers on Selecting the Correct Native Object .. 21
One-Step Values for Native Objects .. 24
Implementing Native Object Verification ... 25
Best Practice Opening Scripts for Every Object Test Case .. 26
Integrating Native App Testing with Other Systems.. 26

DeviceAnywhere Enterprise 6.1 Best Practices for Object Scripting

4 Keynote Confidential

1 Overview
DeviceAnywhere Enterprise 6.0 has new automation capabilities that vastly simplify script creation and
management.

 Script recording—you can now record scripts out of the box by interacting directly with a device.
And you can always edit a recorded script to add commands or branches.

 Object-level commands—you can work directly with web elements or native objects to create scripts
that operate across multiple devices and are not sensitive to changes in your app UI. Object-level
commands enable you to create and maintain fewer scripts.

Read on for best practices and information on recording scripts, general tips for testing mobile apps, and
specific tips on testing web apps or native apps.

2 Script Recording
Many Ways to Script
With the script recorder and the ability to work with objects, there are now several ways to create
automated scripts in DeviceAnywhere Enterprise:

 Record scripts

 The quickest way to create a script is to record simple, device-specific (or partitioned)
implementations.

 You can record unpartitioned web object scripts in Web Mode.

 Use UI-based commands—you can drag and drop commands onto the script canvas to work with the

text or images on your device screen. Because of the differences in device UIs, these scripts are
generally partitioned by device model. With DeviceAnywhere Enterprise’s visual scripting language,
even those with little or no scripting experience can create implementations very quickly.

Best Practices for Object Scripting DeviceAnywhere Enterprise 6.1

 Keynote Confidential 5

 Use Web or Object commands—instead of working with the visual content of a device screen, you

work with the underlying web elements or native objects. These scripts are unpartitioned and can
operate across devices and remain robust through UI changes.

 Drag and drop commands onto the script canvas.

 Record Web commands in Web Mode.

When to Use Recording
If you want to create a simple, single-branch script, recording is the way to go. For example, your script
might consist of swiping the device screen and pressing a button. Recording is also useful to create a
baseline script that you can modify later. You can always edit recorded scripts to add commands and
make them more complex.

Recording creates a script with the following commands:

 Find and Touch commands—for touches and swipes

 Hold the Ctrl key and drag your mouse to swipe the device screen.

 Send Keys commands—for key presses and data entry

 Web Touch and Web Element commands when recording in Web Mode

Figure 1 Recording a Script

DeviceAnywhere Enterprise 6.1 Best Practices for Object Scripting

6 Keynote Confidential

While recording, you can insert non-recordable commands:

 Click Add Verification Step to define text-, image-, or other types of screen verifications.

 Drag and drop any other command from the toolbar, e.g., to call a variable.

Recorded scripts are saved automatically.

Choosing a Recording Option

After you have acquired a device and clicked above the script canvas, you can choose recording
options—Advanced. You can switch recording options as you record a script.

Figure 2 Recording Options

 Record consecutive touches in the same command. Consecutive key presses or screen taps are

recorded into a single Send Keys command. If there is delay between presses/taps, they are recorded
into separate Send Keys commands. Screen taps are defined in terms of the x and y coordinates, e.g.,
[Touch(51,146)].

Use this option when it makes sense to have consecutive key presses in one command, e.g., when
entering content into a text message or a note.

 Record consecutive touches in separate commands (default). Each key press or screen tap is recorded

into a separate command, Find and Touch for touchscreen taps and swipes, Send Keys for device key
presses. Touchscreen taps and swipes are defined in terms of captured screen images.

Best Practices for Object Scripting DeviceAnywhere Enterprise 6.1

 Keynote Confidential 7

Use this mode when it’s important to have visual information in your command, e.g., when moving
from one application page to another, or when enabling or disabling important settings.

 Record in Web Mode—use to capture Web commands when interacting with a web app.

NOTES You will need to launch your browser before turning on Web Mode. Web Mode captures
Web Element and Web Touch commands inside a web page or application.

As Web commands interact directly with web elements, it is best not to mix Web commands and UI-
based commands in the same script—see General Tips for Testing Mobile Apps below.

DeviceAnywhere Enterprise 6.1 Best Practices for Object Scripting

8 Keynote Confidential

Recording Tips
 When recording, as when writing a script, think about repeatability—know the path you wish to take

on the device and record only that. Remember, once you click Record, any device interaction is
recorded into your script. Any extraneous clicks recorded will interfere with expected results.

 Start recording from a known place such as the device home screen. Then after recording, run your
script from the same place, e.g., the home screen.

 Before recording, have the values that you want to enter into fields handy.

 If recording Web commands, make sure that your devices meet the requirements for doing so (review
the DeviceAnywhere Enterprise Automation User Guide).

3 General Tips for Testing Mobile Apps
Comparing Visual and Object-Level Scripts

Table 1 Visual vs. Object-Level Scripts

 Visual Scripts Object-Level Scripts

Commands Use UI-based commands in any application. Use Web commands for web applications.
Use Object commands for native applications.

UI Changes Impacted by UI changes; image or text
matching commands will need to be updated.

Reliable across UI changes.

Partitioned/
Unpartitioned

Typically requires device-specific actions with
implementations per device model to account
for UI differences.

Scripts operate across devices (native scripts
operate across devices in the same OS
family).

Verifications Script verification based on UI (device image
or text).

Verification based on finding
elements/objects.

Making the Most of Unpartitioned Scripts
With web or native object-level commands, instead of working with the visual content of a device screen,
you work with the underlying web elements or native objects. Depending on how you set up your
applications, underlying elements stay relatively stable across changes to the UI. In turn, you can set up
unpartitioned scripts that work across all devices in your project. You need not partition a script to
account for differences in how your application is displayed on different devices.

Figure 3 Creating an Unpartitioned Action

http://www.keynotedeviceanywhere.com/userfiles/file/documentation/TestAutomationUserGuide.pdf

Best Practices for Object Scripting DeviceAnywhere Enterprise 6.1

 Keynote Confidential 9

NOTE Once a script is set up as partitioned or unpartitioned, it cannot be reversed.

If your application behaves differently on say, iPhones and Android devices, create separate projects for
scripts and devices for each platform. You could then create unpartitioned scripts in each project to work
across all platform devices.

The image below shows a new, unpartitioned script that can work across all iOS devices shown in the
right pane. You can select any device to interact with it in order to write or record your script.

NOTE As object-level commands interact directly with web or native elements, it is best not to mix them
with UI-based commands in the same script.

Figure 4 Unpartitioned Script Canvas

Accounting for Pop-Ups and Other One-Time Application Behavior
Applications and devices display one-time behaviors that are often not scripted for. You must account for
these behaviors and the points at which they occur in your scripts and reference points.

For example, the first time you log in to a banking application, you might be required to sign an
agreement. Or when you navigate to the store locator in an application, it asks to use your current
location. These screens only appear again when a user resets the device or application, reinstalls the
application, clears the browser cache, changes application location settings, or changes a device’s use of
GPS data.

The images below show the location sharing screen of the Kelly Blue Book application and the GPS
settings on an Android device. Any change to these settings can cause a change in how your web or

DeviceAnywhere Enterprise 6.1 Best Practices for Object Scripting

10 Keynote Confidential

native application behaves. Before you run a script, check that these settings have not changed, or build
scripts that check such device settings.

If these settings are likely to change, you should create branches for the one-time application screens that
appear, e.g., asking you to set a location or sign a user agreement.

Figure 5 Settings That Change Application Behavior

Using Object vs. Image or Text Verification
You can use different types of reference points to verify script outcomes. Each kind of reference point has
unique benefits and can serve different uses.

 Image- or text-based reference points allow you to choose text or an image from the device screen
that must be matched at runtime. As these reference points are UI based, they must be defined
separately for each device in your project.

 Web element- or native object-based reference points use underlying structures to verify a script
outcome on an application page. These reference points can be defined for all devices in a project
(web) or for all devices on a platform (native object).

Use UI-based reference points to check the actual appearance of something, for example:

 Company branding

 To check that the correct image is displayed

 The color and size of an image

 Actual text (with a strict margin of error) that appears on the screen

NOTE As UI-based reference points are device specific, be sure to use them only in partitioned scripts
(action implementations), not combined with other Web and Object commands.

Use object-based reference points when the appearance or content of an element doesn’t matter so much,
for example:

Best Practices for Object Scripting DeviceAnywhere Enterprise 6.1

 Keynote Confidential 11

 To verify that you are on an application page by the presence/absence of an element

 To verify a certain outcome by the presence/absence of an element on a page

The table below compares visual and object-level reference points so you can choose which to use based
on your needs:

Table 2 Visual vs. Object-Level Reference Points

 Visual Reference Points Object-Level Reference Points

Based on Pixel-to-pixel matching of a screen area or
text extracted using character recognition

Web element or native object
 You can select any web element as a

reference point.
 You can select a native object that has text

associated with it as a reference point.

Commands Wait Event and states Web Wait (web elements)
Wait Event and states (native objects)

UI Changes Impacted by UI changes. Reliable across UI changes.

Use for Verifying exact display of an image or text Verifying existence of an object or element on a
page but not its appearance

Partitioned/
Unpartitioned

Use in partitioned scripts. Or define in a
state for all project devices and call from an
unpartitioned script.

Can use in both partitioned and unpartitioned
scripts.

The images below show different reference points on the same page of a native application. In the image
below, the scripter wants to verify that the image of a Bentley Continental is matched exactly at runtime.

Figure 6 Verifying an Image in a Native Application

Image to be
verified

Image-based
reference point

in Wait Event

DeviceAnywhere Enterprise 6.1 Best Practices for Object Scripting

12 Keynote Confidential

In this object-level reference point, an object is used to verify the same application page.

Figure 7 Verifying an Object in a Native Application

4 Tips for Testing Web Apps
Benefits of Using Web Commands
Commands in the Web category offer the most direct and robust way to interact with web content in web
or hybrid applications on Android, iOS, and BlackBerry devices.

With Web commands, you can create unpartitioned scripts, work with elements that are not visible on the
device screen, fill out and submit entire forms quickly, open and close the native browser from anywhere
on the device.

 Web Element—Selects an element from the web page and performs an appropriate action.

 Web Wait—Verifies a web element.

 Web Form—Fills values in fields and submits a web form.

 Web Touch—Finds and touches/clicks a web element.

Object chosen to
verify the

application page

Object-based
reference point

in Wait Event

Best Practices for Object Scripting DeviceAnywhere Enterprise 6.1

 Keynote Confidential 13

 Additionally, the Browser Open and Close All Browser Sessions utilities enable you to open
and close native browser sessions.

Figure 8 Web Commands

Opening and Closing Browsers Quickly
Use the Browser Open and Close All Browser Sessions shortcut commands in the Utilities category to
speed up mobile web testing.

 Browser Open—Launches the native device browser from anywhere on the device and directly
navigates to a desired URL.

 Close All Browser Sessions—Closes all open native browser sessions from anywhere on the device.

Both commands also give you the option of clearing browser cache when you open or close the native
browser. Browser Open and Close All Browser Sessions work on Android and iOS devices and require
the DeviceAnywhere Agent.

To close Android browser sessions, use:

 The Close All Browser Sessions command (check Clear browser cache) on Android 4.0.x devices

 The Open Browser command with Clear browser cache checked (this closes any open native browser
sessions and opens a fresh session at the URL specified)

You can also open and close native and non-native device browsers in these other ways:

 Use the Launch App and Close App commands (used for native applications).

 Use the Find and Touch command.

NOTES These other methods to open/close browsers do not automatically clear the cache or register the
device MCD with the DeviceAnywhere DOM Server for web testing.

Find and Touch is a UI-based command and should not be combined with object-level commands in an
unpartitioned script.

Pointers for Selecting the Correct Web Element
In order to interact with a web element, you must first search for it and select it in a Web command.

DeviceAnywhere Enterprise Web commands make it easy to select the right type of element.

 For example, only clickable elements are presented in Web Touch and only <form> elements in Web
Form. Web Wait and Web Element allow you to choose and work with any element.

 Additionally, you can select any element shown in a Web command, even those not visible on device
screen. You do not have to implement a swipe to work with an element that only appears when you
scroll the page.

DeviceAnywhere Enterprise 6.1 Best Practices for Object Scripting

14 Keynote Confidential

Web commands allow you to search for an element by any of these criteria:

 Name—the name attribute of an element

 ID—the id attribute of an element

 Text—the text between opening and closing tags of an element

 Tag—the tag applied to an element

 XPath—the path expression identifying the element in the DOM

 CSS Selector—the CSS Selector location of the element

Figure 9 Search Criteria for Web Elements

Whenever possible, search for an element by Name, ID, Text, and Tag. If an element’s location in the
markup is changed, its XPath and CSS selector expressions can change. Even if markup remains
unaltered, XPath location can change from one device to another or when you change orientation on the
same device.

If you cannot find an element using a particular search criterion, try another.

The web page DOM viewer is another powerful tool that helps you locate an element and its path
expression.

When you launch the DOM viewer in a command (Show DOM Tree), you can enable inspect mode
(Turn Inspect Mode On.) When click on the device, the corresponding element is highlighted on both the
device screen and in the DOM tree. Likewise, when you select an element in the tree, it is also highlighted
on the screen, helping you locate the element you want.

The XPath location of any selected element is also displayed in the DOM viewer.

Best Practices for Object Scripting DeviceAnywhere Enterprise 6.1

 Keynote Confidential 15

Figure 10 Inspect Mode in the DOM Viewer

Tools for Narrowing Down Element Search Results
If you have many search results and need to narrow them down, you can:

 Use the additional search filters in Filtering Options.

 Select a search result by Index number.

Note that the index number is not intrinsic to an element. The order of an element in search results
can change depending on the search criteria you use or the credentials you use to log in to a web
page. An element’s position in search results can also change from one device to another or when you
change device orientation. Source code can also be altered to change the relative position of an
element in the markup.

The images below show search results before and after filtering by index number.

DeviceAnywhere Enterprise 6.1 Best Practices for Object Scripting

16 Keynote Confidential

 Select a search result and then click Inspect Element. The element is highlighted on the device screen

Inspect Element is a powerful tool that simultaneously highlights an element in a command and on
the device screen, helping you locate the element you want.

Best Practices for Object Scripting DeviceAnywhere Enterprise 6.1

 Keynote Confidential 17

Troubleshooting Empty Web Commands
If you open a Web command and it does not fill out with information, you will see the following
message:

Figure 11 Unable to Process Web Command

There are several things you could check to troubleshoot this issue:

 If you have a private, on-premise environment, check that your DOM Server is configured correctly.

 Check that your device meets all the requirements for web testing.

 Check that your device is acquired.

 Check that your device is on a test web page with the required JavaScript tag.

 Check that your device MCD is registered with the DOM Server.

Options for Setting the Device MCD for Testing Web Apps
To use Web commands on a device, you must register the device MCD with the DOM Server at the start
of a device session. The best practice is to register the device MCD automatically using the Browser Open
command.

You might still need to register the MCD manually, e.g., if you are using a non-native device browser.
Navigate to the registration page (http://<DOMServerAddress>/ da/views/mcd.html) and enter
the MCD. You must do so from each device browser you plan to use.

In on-premise environments, you have the option to be prompted if the device MCD is not automatically
detected (i.e., when using the Browser Open command). This option must be enabled when you install
the DOM Server—check Prompt MCD in the DOM Server installation screen below (Figure 12).

The prompt to enter an MCD will be seen whenever the device cannot be registered automatically, even
by manual testers in your environment. To avoid this, you can install separate systems for manual and
automated testing. Also ensure that you script for this prompt in your automated scripts. And if you are
not able to test your hybrid application after enabling this prompt, contact your Keynote Solutions
Consultant.

Being prompted for an MCD is not recommended in production systems.

DeviceAnywhere Enterprise 6.1 Best Practices for Object Scripting

18 Keynote Confidential

Figure 12 Enabling a Prompt to Register the Device MCD

One-Step Values for Web Elements
When you work with Web commands, you can select an element such as a drop-down list and choose a
value for it in one go. In other words, you don’t need to have one command for setting focus in a field
and another for entering a value. You can set a value for an element using the Web Element or Web Form
commands.

The image below shows how to select a field and set a value for it in a single Web Element command.

Best Practices for Object Scripting DeviceAnywhere Enterprise 6.1

 Keynote Confidential 19

Figure 13 Setting Element Value in Web Element

One-Step Form Entry and Submission
The Web Form command allows you to select a form, set a value for all fields (including fields not visible
on the device screen), and submit the form.

When you select a form (<form> element) in the Web Form command, all fields in the form are displayed,
and you can set a value for each of them.

The image below shows how to enter data into several form fields in the Web Form command.

Figure 14 Entering Data in Form Fields—Web Form

Select a value, enter your own value, or click Use Variable to
pass in the value from a variable.

DeviceAnywhere Enterprise 6.1 Best Practices for Object Scripting

20 Keynote Confidential

Submit buttons for the form as a whole are not listed with other form elements. To click a submit button
after filling out form fields, choose the Submit action for the form as a whole.

Figure 15 Actions for a Form in Web Form

Any other buttons at the bottom of your form are listed with form elements, e.g., the “Next” button at the
bottom of the first page of a three-page form. Do not choose any action for this button. Instead, use a Web
Touch command after the Web Form command to click the button. This ensures that the button is clicked
after all form fields are filled out.

5 Best Practices for Testing Native Apps
Benefits of Using Object Commands
Commands in the Object category enable you to create unpartitioned scripts for native applications on
Android 4.0.4 devices or higher. A beta release of these commands is available for iOS devices. Devices
must be configured for this feature to work—please contact your Keynote Solutions Consultant.

As Object commands work directly with native application objects, your scripts operate across device
models and are not sensitive to application UI changes. You also have powerful tools to launch or close
native application sessions from anywhere on the device.

Figure 16 Object Commands

 Launch App—Open a native application.

 Close App—Close a native application.

 Object Touch—Find and click an object (identified by associated text).

 Object Edit—Enter data into an object.

 Object Extract Text—Extract text from an object to a variable.

 To use a native object for script verification, select Wait Object in a state or the Wait Event command.

Best Practices for Object Scripting DeviceAnywhere Enterprise 6.1

 Keynote Confidential 21

Pointers on Selecting the Correct Native Object
In order to interact with a native object, you must first select it in an Object command.

Unlike Web commands, Object commands display the visual layout of native objects on an application
page, with a slight difference—only objects visible on the device screen are displayed. You can only select
and work with an object shown in the layout.

Objects That Are Partially Inside the Layout

In some application pages, objects in the layout appear outside the edges of the device screen. The object
you select must at least be partially contained within the layout or it will not be correctly selected during
run time.

Figure 17 Selecting a Native Object

Do not select objects
that lie off screen

Object that lies partially on
screen—test to ensure it is
selected correctly during
execution

DeviceAnywhere Enterprise 6.1 Best Practices for Object Scripting

22 Keynote Confidential

Scrolling to Make an Object Visible

You can, however, work with an object that becomes visible after you scroll up/down or left/right. On the
page shown below, you need to swipe the screen up before you can see the carmaker “Ford.” In a
command, you must implement a swipe so that the object you want becomes visible. Choose the same
swipe direction as your finger would move if you were physically controlling the device.

Figure 18 Before Scrolling

At run time, the screen is scrolled until the object is found or until the command times out.

If you scroll the device screen to view the item you want (with Auto-Update Layout checked), you will
see the object selected correctly in the command.

If implementing a scroll to bring an object into view, increase the command Timeout.

Item to be clicked (not
visible)

Item to be clicked (Ford)
is not visible on the
device screen

Best Practices for Object Scripting DeviceAnywhere Enterprise 6.1

 Keynote Confidential 23

Figure 19 After Scrolling

Selecting an Object by Text

 In the Object Touch command (see Figure 18 and Figure 19 above), you select an object by specifying
associated text. You can also pass in this value from a variable.

 When you select an object with no visible text, its class ID is displayed instead. If there are several
objects that match the class ID, they are all displayed. You can then use the Index number to indicate
which of the displayed objects you want to select.

Item to be clicked
highlighted in command

Item to be clicked (Ford)
is visible on the device
screen

DeviceAnywhere Enterprise 6.1 Best Practices for Object Scripting

24 Keynote Confidential

Web Frames Within Native Application Pages

Object commands cannot be used on web pages or on nested web pages within a native application.
These web frames are usually marked as Web View in an Object command.

Figure 20 Object Commands Cannot Work on Web Content

One-Step Values for Native Objects
You can use the Object Edit command to enter data into a native object. When you select an object field:

 DeviceAnywhere Enterprise sets focus in the field automatically. (You can change this setting in the
Advanced tab.)

 You can also clear existing text automatically—set Clear Text First to true in the Advanced tab.

Figure 21 Options for Object Data Entry

Best Practices for Object Scripting DeviceAnywhere Enterprise 6.1

 Keynote Confidential 25

Implementing Native Object Verification
Use the Wait Object option in a state or the Wait Event command to implement object-based script
verification. You can select an object to wait for by its associated text or by its ID.

 When selecting an object, choose an object that uniquely identifies the application page.

 Whenever possible, select Object Text over Object ID. Object ID includes an index number of the
object’s relative position on the application page. This value is not an intrinsic characteristic of an
object and can change over time.

The image below shows selecting an object by its associated text. If many objects have the same text, you
can choose a specific object by selecting its Index number. Whenever possible, choose object text that is
unique to an object; the index number is not an intrinsic property of an object and can change over time.

Figure 22 Waiting for an Object

Waiting for an object in
Wait Event

Selected object

Text from selected object
(automatically displayed)

DeviceAnywhere Enterprise 6.1 Best Practices for Object Scripting

26 Keynote Confidential

Best Practice Opening Scripts for Every Object Test Case
To start off an object test case, especially a scheduled test case:

 Begin your test case by checking if the device is asleep, and if required, restart the device—many
Android devices have sleep timers that cannot be disabled.

 To start using your application in a known state:

 Reset the application using Close App.

 Insert a brief Wait time.

 Open the application using Launch App.

This clears data from the previous application session and opens it on the home page.

Integrating Native App Testing with Other Systems
DeviceAnywhere’s command line utility for uploading and managing applications, cliAppManager,
can be integrated with standard build systems to automate application installation. If you enable test
cases or test cycles to be scheduled, you can combine application installation with kicking off your daily
tests.

	DeviceAnywhere Enterprise
	Best Practices for Object Scripting
	Notice
	Copyright Notice
	Contents
	1 Overview
	2 Script Recording
	Many Ways to Script
	When to Use Recording
	Choosing a Recording Option
	Recording Tips

	3 General Tips for Testing Mobile Apps
	Comparing Visual and Object-Level Scripts
	Making the Most of Unpartitioned Scripts
	Accounting for Pop-Ups and Other One-Time Application Behavior
	Using Object vs. Image or Text Verification

	4 Tips for Testing Web Apps
	Benefits of Using Web Commands
	Opening and Closing Browsers Quickly
	Pointers for Selecting the Correct Web Element
	Tools for Narrowing Down Element Search Results
	Troubleshooting Empty Web Commands
	Options for Setting the Device MCD for Testing Web Apps
	One-Step Values for Web Elements
	One-Step Form Entry and Submission

	5 Best Practices for Testing Native Apps
	Benefits of Using Object Commands
	Pointers on Selecting the Correct Native Object
	Objects That Are Partially Inside the Layout
	Scrolling to Make an Object Visible
	Selecting an Object by Text
	Web Frames Within Native Application Pages

	One-Step Values for Native Objects
	Implementing Native Object Verification
	Best Practice Opening Scripts for Every Object Test Case
	Integrating Native App Testing with Other Systems

